Abstract

IPv6 over Low-powered Wireless Personal Area Networks (6LoWPAN) has grown in importance in recent years, with the Routing Protocol for Low Power and Lossy Networks (RPL) emerging as a major enabler. However, RPL can be subject to attack, with severe consequences. Most proposed IDSs have been limited to specific RPL attacks and typically assume a stationary environment. In this article, we propose the first adaptive hybrid IDS to efficiently detect and identify a wide range of RPL attacks (including DIO Suppression, Increase Rank, and Worst Parent attacks, which have been overlooked in the literature) in evolving data environments. We apply our framework to networks under various levels of node mobility and maliciousness. We experiment with several incremental machine learning (ML) approaches and various ‘concept-drift detection’ mechanisms (e.g. ADWIN, DDM, and EDDM) to determine the best underlying settings for the proposed scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.