Abstract

The aim of this paper is to investigate and to enhance crashworthiness of frontal barrier impact using a new idea of crash improvement. Two different types of smart front-end structure are proposed to support the function of the existing vehicle. The work described includes developing and analysing mathematical models of vehicle-to-rigid barrier full and offset frontal collision events for the two types of smart front-end structure. In these models, vehicle components are modelled by lumped masses and nonlinear springs. Moreover, the hydraulic cylinders are represented by non-linear damper elements. In this paper, the dynamic responses of the crash events are obtained with the aid of analytical approach using the Incremental Harmonic Balance Method (IHBM). In addition, the intrusion injury and occupant deceleration are used for interpreting the results. It is demonstrated from simulation results that significant improvements to both intrusion and deceleration injuries are obtained using the smart front-end structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.