Abstract
Graph neural networks (GNN) recently achieved huge success in collaborative filtering (CF) due to the useful graph structure information. However, users will continuously interact with items, which causes the user-item interaction graphs to change over time and well-trained GNN models to be out-of-date soon. Naive solutions such as periodic retraining lose important temporal information and are computationally expensive. Recent works that leverage recurrent neural networks to keep GNN up-to-date may suffer from the "catastrophic forgetting'' issue, and experience a cold start with new users and items. To this end, we propose the incremental graph convolutional network (IGCN) --- a pure graph convolutional network (GCN) based method to update GNN models when new user-item interactions are available. IGCN consists of two main components: 1) a historical feature generation layer, which generates the initial user/item embedding via model agnostic meta-learning and ensures good initial states and fast model adaptation; 2) a temporal feature learning layer, which first aggregates the features from local neighborhood to update the embedding of each user/item within each subgraph via graph convolutional network and then fuses the user/item embeddings from last subgraph and current subgraph via incremental temporal convolutional network. Experimental studies on real-world datasets show that IGCN can outperform state-of-the-art CF algorithms in sequential recommendation tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.