Abstract

Person re-identification (re-id) suffers from the significant challenge of occlusion, where an image contains occlusions and less discriminative pedestrian information. However, certain work consistently attempts to design complex modules to capture implicit information (including human pose landmarks, mask maps, and spatial information). The network, consequently, focuses on discriminative features learning on human non-occluded body regions and realizes effective matching under spatial misalignment. Few studies have focused on data augmentation, given that existing single-based data augmentation methods bring limited performance improvement. To address the occlusion problem, we propose a novel Incremental Generative Occlusion Adversarial Suppression (IGOAS) network. It consists of 1) an incremental generative occlusion block, generating easy-to-hard occlusion data, that makes the network more robust to occlusion by gradually learning harder occlusion instead of hardest occlusion directly. And 2) a global-adversarial suppression (G&A) framework with a global branch and an adversarial suppression branch. The global branch extracts steady global features of the images. The adversarial suppression branch, embedded with two occlusion suppression module, minimizes the generated occlusion's response and strengthens attentive feature representation on human non-occluded body regions. Finally, we get a more discriminative pedestrian feature descriptor by concatenating two branches' features, which is robust to the occlusion problem. The experiments on the occluded dataset show the competitive performance of IGOAS. On Occluded-DukeMTMC, it achieves 60.1% Rank-1 accuracy and 49.4% mAP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.