Abstract

Abstract In this paper, we propose a General Non-negative Matrix Factorization based on the left Semi-Tensor Product (lGNMF) and the General Non-negative Matrix Factorization based on the right Semi-Tensor Product (rGNMF), which factorize an input non-negative matrix into two non-negative matrices of lower ranks based on gradient method. In particular, the proposed models are able to remove the dimension matching constraints required by conventional NMF models. Both theoretical derivation and experimental results show that the conventional NMF is a special case of the proposed lGNMF and rGNMF. We find the method for the best efficacy of the image restoration in lGNMF and rGNMF by experiments on baboon and lenna images. Moreover, inspired by the Incremental Non-negative Matrix Factorization (INMF), we propose the Incremental lGNMF (IlGNMF) and Incremental rGNMF (IrGNMF), We also conduct the experiments on JAFFE database and ORL database, and find that IlGNMF and IrGNMF realize saving storage space and reducing computation time in incremental facial training.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.