Abstract
Several networking architectures have been developed atop IEEE 802.3 networks to provide real-time communication guarantees for time-sensitive applications in industrial automation systems. The basic principle underlying these technologies is the precise transmission scheduling of time-triggered traffic through the network for providing deterministic and bounded latency and jitter. These transmission schedules are typically synthesized offline (computational time in the order of hours) and remain fixed thereafter, making it difficult to dynamically add or remove network applications. This paper presents algorithms for incrementally adding time-triggered flows in a time-sensitive software-defined network (TSSDN). The TSSDN is a network architecture based on software-defined networking, which provides real-time guarantees for time-triggered flows by scheduling their transmissions on the hosts (network edge) only. These algorithms exploit the global view of the control plane on the data plane to schedule and route time-triggered flows needed for the dynamic applications in the Industrial Internet of Things (Industry 4.0). The evaluations show that these algorithms can compute incremental schedules for time-triggered flows in subseconds with an average relative optimality of 68%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.