Abstract
The investigation of the cleaning effectiveness of air cleaners under realistic conditions is challenging. Mathematical models are needed to extract characteristic properties of the air cleaning system from experimental data. An incremental evaluation model based on a source term and a total first-order loss coefficient in each segment was developed to analyze indoor particle measurements. The application of the model is demonstrated using two scenarios, one in a well-mixed testing room and another in a fully equipped aircraft cabin at 750 hPa with a typical aircraft ventilation system. In the first scenario, a normalized version of the model is used to eliminate the source’s influence. For the investigation in the aircraft cabin, the model served to extract temporal and spatial resolved source terms and first-order loss coefficients. The incremental evaluation model is applicable to enhance the certification of air cleaners. The application of the model is not only limited to particles; measurements of gaseous compounds like ozone, carbon dioxide, or volatile organic compounds can be evaluated analogously. The model’s utility for the data analysis of experiments with complex flow conditions should be studied in further investigations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.