Abstract

Incremental data drifting is a common problem when employing a machine-learning model in industrial applications. The underlying data distribution evolves gradually, e.g., users change their buying preferences on an E-commerce website over time. The problem needs to be addressed to obtain high performance. Right now, studies regarding incremental data drifting suffer from several issues. For one thing, there is a lack of clear-defined incremental drift datasets for examination. Existing efforts use either collected real datasets or synthetic datasets that show two obvious limitations. One is in particular when and of which type of drifts the distribution undergoes is unknown, and the other is that a simple synthesized dataset cannot reflect the complex representation we would normally face in the real world. For another, there lacks of a well-defined protocol to evaluate a learner’s knowledge transfer capability on an incremental drift dataset. To provide a holistic discussion on these issues, we create approaches to generate datasets with specific drift types, and define a novel protocol for evaluation. Besides, we investigate recent advances in the transfer learning field, including Domain Adaptation and Lifelong Learning, and examine how they perform in the presence of incremental data drifting. The results unfold the relationships among drift types, knowledge preservation, and learning approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call