Abstract

This paper deals with a new micromechanics model of particulate-reinforced composites (PRCs) describing the evolution of debonding damage, matrix plasticity and particle size effect on the deformation. A ductile interphase was considered in the frame of incremental damage theory to analyze the dependence of elastic–plastic–damage behavior on particle size. Progressive debonding damage was controlled by a critical energy criterion for particle–matrix interfacial separation. The equivalent stresses of the matrix and interphase were determined by field fluctuation method. The influences of progressive debonding damage, particle size and interphase properties on the overall stress–strain response of PRC were explained simultaneously. Due to the existence of a ductile interphase, stress transfer and plastic initiation in PRC become very complicated, and thus a unit-cell (UC) based FEM was used to simulate their evolutions and demonstrate the role of the interphase. Finally, particle size effect on the mechanical behaviors of composites was interpreted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call