Abstract
Cooperative coevolution (CC) is an efficient framework for solving large-scale global optimization (LSGO) problems. It uses a decomposition method to divide the LSGO problems into several low-dimensional subcomponents; then, subcomponents are optimized. Since CC algorithms do not consider any imbalance feature, their performance degrades during solving imbalanced LSGO problems. In this paper, we propose an incremental CC (ICC) algorithm in which the algorithm optimizes an integrated subcomponent which subcomponents are dynamically added to it. Therefore, the search space of the optimizer is grown incrementally toward the original problem search space. Various search spaces are built according to three approaches, namely random-based, sensitivity analysis-based, and random sensitivity analysis-based methods; then, ICC explores these search spaces effectively. Random-based selects a subcomponent randomly for adding it to the current search space and the sensitivity analysis-based method uses a sensitivity analysis strategy to select a subcomponent. The random sensitivity analysis-based strategy is a hybrid of the random and sensitivity analysis-based methods. Theoretical analysis is provided to demonstrate that the proposed ICC-based algorithms are effective for solving imbalanced LSGO problems. Finally, the efficiency of these algorithms is benchmarked on the complex imbalanced LSGO problems. Simulation results confirm that ICC obtains a better performance overall.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.