Abstract

An important class of planar straight-line drawings of graphs are convex drawings, in which all the faces are drawn as convex polygons. A planar graph is said to be convex planar if it admits a convex drawing. We give a new combinatorial characterization of convex planar graphs based on the decomposition of a biconnected graph into its triconnected components. We then consider the problem of testing convex planarity in an incremental environment, where a biconnected planar graph is subject to on-line insertions of vertices and edges. We present a data structure for the on-line incremental convex planarity testing problem with the following performance, where n denotes the current number of vertices of the graph: (strictly) convex planarity testing takes O(1) worst-case time, insertion of vertices takes O(log n) worst-case time, insertion of edges takes O(log n) amortized time, and the space requirement of the data structure is O(n).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call