Abstract

In streaming data applications, the incoming samples are processed and discarded, and therefore, intelligent decision-making is crucial for the performance of lifelong learning systems. In addition, the order in which the samples arrive may heavily affect the performance of incremental learners. The recently introduced incremental cluster validity indices (iCVIs) provide valuable aid in addressing such class of problems. Their primary use case has been cluster quality monitoring; nonetheless, they have been recently integrated in a streaming clustering method. In this context, the work presented, here, introduces the first adaptive resonance theory (ART)-based model that uses iCVIs for unsupervised and semi-supervised online learning. Moreover, it shows how to use iCVIs to regulate ART vigilance via an iCVI-based match tracking mechanism. The model achieves improved accuracy and robustness to ordering effects by integrating an online iCVI module as module B of a topological ART predictive mapping (TopoARTMAP)-thereby being named iCVI-TopoARTMAP-and using iCVI-driven postprocessing heuristics at the end of each learning step. The online iCVI module provides assignments of input samples to clusters at each iteration in accordance to any of the several iCVIs. The iCVI-TopoARTMAP maintains useful properties shared by the ART predictive mapping (ARTMAP) models, such as stability, immunity to catastrophic forgetting, and the many-to-one mapping capability via the map field module. The performance and robustness to the presentation order of iCVI-TopoARTMAP were evaluated via experiments with synthetic and real-world datasets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call