Abstract

This paper describes the construction of a local polyhedral 3-D feature model derived from pose and wrench sensor measurements collected during a force-controlled execution of a sequence of polyhedral contact formations. The procedure consists of two steps: 1) the sensor measurements are filtered, resulting in a (nonminimal) representation of a 3-D feature model; and 2) identification of a reduced set of geometric parameters (vertices and faces) of the rigid polyhedral objects in the environment is performed. The following improvements with respect to the state of the art are made: 1) creation of a polyhedral 3-D feature model of a previously unknown polyhedral environment; 2) estimation of a force decomposition useful for feedback in a force controller or for monitoring the contact forces; and 3) reduction of the number of model parameters, leading to a computational reduction, a better precision of the geometric parameters, and a higher level description of the contact topology

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.