Abstract

Current electrophysiology signal recording and mapping systems have limited dynamic range (DR) and bandwidth, which causes loss of valuable information during acquisition of cardiac signals. We evaluated a novel advanced signal processing platform with the objective to obtain and assess additional information of clinical importance. Over 10 canines, we compared intracardiac recordings within all cardiac chambers, in various rhythms, in pacing and during radiofrequency (RF) ablation across two platforms; a conventional system and the PURE EP™ [(PEP); Bio Sig Technologies, Inc., Los Angeles, CA, USA]. Recording cardiac signals with varying amplitudes were consistently and reproducibly observed, without loss of detail or introduction of artefact. Further the amplitude of current of injury (COI) on the unipolar signals correlated with the instantaneous contact force (CF) recorded on the sensing catheter in all the animals (r2 = 0.94 in ventricle). The maximum change in the unipolar COI correlated with the change in local electrogram amplitude during non-irrigated RF ablation (r2 = 0.61 in atrium). Reduction in artefact attributable to pacing (20 sites) and noise during ablation (48 sites) was present on the PEP system. Within the PEP system, simultaneous display of identical signals, filtered differently, aided the visualization of discrete conduction tissue signals. Compared to current system, the PEP system provided incremental information including identifying conduction tissue signals, estimates of CF and a surrogate for lesion formation. This novel signal processing platform with increased DR and minimal front-end filtering may be useful in clinical practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.