Abstract

In time series analysis, it is well-known that the differencing operator ∇d may transform a non-stationary series, {Z(t)} say, to a stationary one, {W(t)} = ∇dZ(t)}; and there are many procedures for analysing and modelling {Z(t)} which exploit this transformation. Rather differently, Matheron (1973) introduced a set of measures on Rn that transform an appropriate non-stationary spatial process to stationarity, and Cressie (1988) then suggested that specialized low-order analogues of these measures, called increment-vectors, be used in time series analysis. This paper develops a general theory of increment-vectors which provides a more powerful transformation tool than mere simple differencing. The methodology gives a handle on the second-moment structure and divergence behaviour of homogeneously non-stationary series which leads to many important applications such as determining the correct degree of differencing, forecasting and interpolation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.