Abstract

AISI 316L has been used to produce implant plates such as dynamic copmresion plates (DCP). The implant plates might experienced failure due to either suffer higher stresses exceeding the allowable maximum strenght or presents small crack growing through fatigue mechanism. Most of DCP fractures occured at the gliding holes region. This study conducted improving strength of DCP locally on the gliding holes. Strengthening on the gliding holes of DCP was performed by cold working method involving plastically deformation using an expanded hole technique. This study was conducted by both experimental and numerical simulation. Increasing strength locally on the gliding hole region was evaluated by measuring some parameters incorporated with strain hardening mechanism such as hardness and residual stresses. Increasing yields strength locally on the hole region was estimated by Takakuwa’s formulas. By this method, yields strength of the gliding hole of DCP made of AISI 316L increased from 325 MPa to be 600−1050 MPa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call