Abstract
Heterologous protein secretion involves the coupled processes of protein synthesis, protein folding, and secretory trafficking. A more complete understanding of how these processes interrelate could help direct optimization of secretion systems. Here we provide a detailed study regarding the dynamics of heterologous protein secretion from yeast in terms of intracellular protein levels, secreted protein levels, and unfolded protein response (UPR). Three different protein expression induction temperatures (20, 30, and 37 degrees C) were investigated as a means to modulate expression rates and thus cellular responses. Inducing at 20 degrees C yielded the slowest initial secretion rate, but the highest absolute level of product. Correspondingly, the level and the rate of both intracellular protein accumulation and unfolded protein response (UPR) activation were also the lowest at 20 degrees C. In addition, secretion ceased after approximately 22 h at 30 and 37 degrees C, respectively, while it was continuous until nutrient depletion at 20 degrees C. Maxima in secretion levels were observed that were a result of the additive effects of secretion cessation and post-secretory protein loss. The post-secretory loss of protein did not appear to result from solution phase proteolysis or aggregation, but required the presence of yeast cells. Refeeding of both yeast nitrogen base and casamino acids successfully prevented the post-secretory loss of protein at both high (37 degrees C) and low (20 degrees C) temperatures, and further increased secretion levels 1.5-fold at 20 degrees C where the secretory pathway was still functioning. Taken together, these findings suggest that there exists an appropriate balance between protein synthesis, processing and secretion rates required for secretion optimization.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.