Abstract
The article concerns developing and implementing the technological principles for manufacturing the working bodies of chisel tools by casting grey cast iron with partial chilling of its working edges and surfaces interacting with the soil layer. High wear resistance of the working body is achieved by chilling its working part by means of a chill inserted into the mold, or by absence of coating in the corresponding zone of the mold. Severe overcooling of liquid cast iron contacting the chill or the metal surface of the mold causes crystallization of the meta-stable eutectics, and in the chilled part it acquires a ledeburite structure, the hardness being not lower than 64 HRC. At the same time, the bulk of the cast iron crystallizes in the stable system, forming austenitic-graphite eutectics and after complete cooling, it should have a pearlitic metal base, ensuring good machine ability of casting by cutting. Working surfaces and cutting edges of chisels are exposed to abrasive and chemical impacts of the soil, causing intense wear, the latter being the main reason for their failure. The utilization of the given technology will allow increasing service-life of the working bodies and improve the manufacturability, according to the criteria for labor intensity and casting mold making.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.