Abstract

<para xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> Three-phase four-wire inverters, with either three-leg or four-leg topology, are useful for interfacing distributed generation to networks of unbalanced loads, but neither of the available circuit topologies is ideal. The split-link three-leg topology (with six switches) suffers from poor dc voltage utilization compared with the four-leg topology (with eight switches). The four-leg topology has an electromagnetic compatibility (EMC) difficulty because it imposes large-amplitude high-frequency voltages between the dc-link busbars and ground. To obtain both good dc voltage utilization and good EMC performance, it is proposed to use a split-link inverter with an active balancing circuit (also eight switches). The balancing circuit is used to modulate the dc busbar offset voltage to make better use of the available dc-link voltage. The optimum voltage term is established to be a third harmonic term, and the dc voltage utilization is improved. A deadbeat controller supplemented with a repetitive controller is designed to give good tracking and good disturbance rejection for the busbar offset voltage. System performance is studied through an experimental test rig. </para>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.