Abstract

In this paper, three different modifications of the basic Rankine thermodynamic cycle are proposed. The objective is to increase the thermal efficiency of power systems based on Rankine cycles. The three new systems are named “Rankine-1SCR”, “Rankine-2SCR”, and “Rankine-3SCR” cycles, and they consist of linking a refrigeration cycle to the basic Rankine cycle. The idea is to use the refrigeration cycle to create a low temperature heat sink for the Rankine cycle. These three new power plant configurations are modeled and optimized with numerical tools, and then they are compared with the basic Rankine cycle. The objective function is the thermal efficiency of the systems (i.e., net power output (kW) divided by heat rate (kW) entering the system), and the design variables are the operating temperatures within the systems. Among the 84×84 (i.e., 7056) possible combinations of working and cooling fluids investigated in this paper, it is shown that: (i) the Rankine-1SCR system is advantageous for 1338 different fluid combinations, (ii) the Rankine-2SCR system is advantageous for 772 different fluid combinations, and (iii) the Rankine-3SCR system is advantageous for 768 different fluid combinations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.