Abstract

Molecular self-assembly, governed by the subtle balance between intermolecular and molecule–surface interactions, is generally associated with the thermodynamic ground state, while the competition between kinetics and thermodynamics during its formation is often neglected. Here, we present a simple model system of a benzoic acid derivative on a bulk insulator surface. Combining high-resolution noncontact atomic force microscopy experiments and density functional theory, we characterize the structure and the thermodynamic stability of a set of temperature-dependent molecular phases formed by 2,5-dihydroxybenzoic acid molecules, self-assembled on the insulating calcite (10.4) surface. We demonstrate that a striped phase forms before the thermodynamically favored dense phase, indicating a kinetically trapped state. Our theoretical analysis elucidates that this striped-to-dense phase transition is associated with a distinct change in the chemical interactions involved in the two phases. The striped phase is c...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call