Abstract

Genome editing provides a new therapeutic strategy to cure genetic diseases. The recently developed CRISPR-Cas9 base editing technology has shown great potential to repair the majority of pathogenic point mutations in the patient's DNA precisely. Base editor is the fusion of a Cas9 nickase with a base-modifying enzyme that can change a nucleotide on a single strand of DNA without generating double-stranded DNA breaks. However, a major limitation in applying such a system is the prerequisite of a protospacer adjacent motif sequence at the desired position relative to the target site. Progress has been made to increase the targeting scope of base editors by engineering SpCas9 protein variants, establishing systems with broadened editing windows, characterizing new SpCas9 orthologs, and developing prime editing technology. In this review, we discuss recent progress in the development of CRISPR base editing, focusing on its targeting scope, and we provide a workflow for selecting a suitable base editor based on the target nucleotide sequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.