Abstract

Controlled-source electromagnetics (CSEM) has been used as a derisking tool in the hydrocarbon exploration industry. We apply the concept of synthetic aperture to the low-frequency electromagnetic field in CSEM. Synthetic aperture sources have been used in radar imaging for many years. Using the synthetic aperture concept, big synthetic sources can be constructed by adding the response to small sources (building blocks) in different ways, and consequently, big sources with different radiation patterns can be created. We show that the detectability of hydrocarbons is significantly enhanced by applying synthetic aperture to CSEM data. More challenging targets such as deep reservoirs (4 km below sea floor) can be detected. The synthetic aperture technique also increases the sensitivity of the field to subsurface targets in the towing streamer acquisition. We also show that a pseudovertical source (orthogonally distributed dipole pairs) can be constructed synthetically, and that the detection capability of this pseudovertical source is increased by applying field steering. The synthetic aperture concept opens a new line of research in CSEM, with the freedom to design suitable synthetic aperture sources for a given purpose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.