Abstract
Sensing and filtering applications often require Fabry-Perot (FP) etalons with an Interferometer Transfer Function (ITF) having high visibility, narrow Full Width at Half Maximum (FWHM), and high sensitivity. For the ITF to have these characteristics, the illumination beam must be matched to the modes of the FP cavity. This is challenging when a small illumination element size is needed, as typical focused beams are not matched to the FP cavity modes. Bessel beams are a potential alternative as their structure resembles the FP cavity modes while possessing a focused core. To study the feasibility of using Bessel beam illumination, in this Letter, ITFs of an FP etalon were measured using Bessel and Gaussian illumination beams. A Bessel beam with core size of 28 µm provided an ITF with visibility 3.0 times higher, a FWHM 0.3 times narrower, and a sensitivity 2.2 times higher than a Gaussian beam with waist 32 µm. The results show that Bessel beam illumination can provide ITFs similar to that of collimated beam illumination while also having with a focused core.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.