Abstract

Global warming, which has been observed in the world and Ukraine in particular in recent decades, may lead to a decrease in surface and groundwater. In addition, the high level of groundwater pollution and the policy of water purification is a matter of concern. Thus, the question of finding additional and alternative sources of drinking water today is highly urgent. A significant percentage of prospecting works of the last century was devoted to discovering the groundwater fields in fractured crystalline rocks of the Ukrainian Shield. As a rule, the productivity of wells of these formations did not have high flow rates, so even now, mostly the aquifers in sedimentary deposits have been exploited. The low productivity of most wells in water-bearing fractured rocks is associated with the unknown degree of fracturing of the crystalline massif: it is difficult to determine the pathways of groundwater inflow into the fracture system and, accordingly, it is not easy to justify the exploitable groundwater reserves. In this paper, using the groundwater flow model of the Zhashkiv groundwater deposit, it is considered an increase of the productivity of water intake wells in the water-bearing crystalline rocks due to the increasing degree of their fracturing by an explosion. Thus, in hydrogeology, this technique is known when trying to increase the permeability in the near-borehole space, but as a method of artificial recharge of aquiferous crystalline rocks is used very rarely. The paper also examines typical water intakes conditions in fractured crystalline water-bearing rocks, which can be recommended for increasing their productivity by the blasting method. The results indicate that an artificial increase in fracturing degree can have a significant effect on increasing the productivity of water intakes. The basic methods of using explosives, as an example of an artificial increase in fracturing degree, in solving hydrogeological problems and the mechanisms of fractures’ formation during the action of blasting are considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call