Abstract

The optimal diet composition to prevent obesity and its complications is unknown. Study aims were to determine the association of diet composition with energy intake, homeostatic model assessment–insulin resistance (HOMA-IR), and C-reactive protein (CRP). Data were from the NHANES for eligible adults aged 20–74 y from 2005 to 2006 (n = 3073). Energy intake and diet composition were obtained by dietary recall. HOMA-IR was calculated from fasting insulin and glucose concentrations, and CRP was measured directly. Changes for a 1-point increase in percentage of sugar, saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), and alcohol were determined across their means in exchange for a 1-point decrease in percentage of nonsugar carbohydrates. Regression analyses were performed, and means ± SEs were estimated. Increasing the percentage of sugar was associated with increased energy intake in men (23 ± 5 kcal; P < 0.001) and women (12 ± 3 kcal; P = 0.002). In men, increasing percentages of SFAs (58 ± 13 kcal; P = 0.001) and PUFAs (66 ± 19 kcal; P < 0.001) were associated with increased energy intake. In women, increasing percentages of SFAs (27 ± 10 kcal; P = 0.02), PUFAs (43 ± 6 kcal; P < 0.001), and MUFAs (36 ± 13 kcal; P = 0.01) were associated with increased energy intake. Increasing the percentage of alcohol was associated with increased energy intake in men (38 ± 7 kcal; P < 0.001) and women (25 ± 8 kcal; P = 0.001). Obesity was associated with increased HOMA-IR and CRP in both genders (all P ≤ 0.001). Increasing PUFAs was associated with decreasing CRP in men (P = 0.02). In conclusion, increasing the percentage of calories from sugar, fats, and alcohol was associated with substantially increased energy intake but had minimal association with HOMA-IR and CRP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.