Abstract

Protonated and deprotonated biological molecules in the gas phase play an important role in life sciences research. The structural information accessible from the ions is highly dependent upon their charge states. Therefore, it is desirable to develop means for increasing absolute charge states, particularly for ionization methods, such as MALDI, that yield relatively low charge ions. The work presented here demonstrates the formation of a doubly deprotonated polypeptide or oligonucleotide ion (dianion) from a singly deprotonated analogue via two sequential ion/ion proton-transfer reactions involving charge inversion. The high exoergicity and the large cross section arising from the long-range attractive Coulomb potential of ion/ion reactions make this process plausible. In this example, an overall efficiency of conversion of singly charged ions to doubly charged ions of roughly 8% for polypeptide was noted while lower efficiency (roughly 2%) observed with an oligonucleotide is likely due to a greater degree of neutralization. No other approach to increasing the net negative charge of an anion in the gas phase has as yet been reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.