Abstract

Point-of-care (POC) devices for infant HIV testing provide timely result-return and increase antiretroviral (ART) initiation. We aimed to optimally locate POC devices to increase 30-day ART initiation in Matabeleland South, Zimbabwe. We developed an optimization model to identify the locations for limited POC devices at health facilities, maximizing the number of infants who receive HIV test results and initiate ART within 30 days of testing. We compared location-optimization model results to non-model-based decision heuristics, which are more practical and less data-intensive. Heuristics assign POC devices based on demand, test positivity, laboratory result-return probability, and POC machine functionality. With the current placement of 11 existing POC machines, 37% of all tested infants with HIV were projected to receive results and 35% were projected to initiate ART within 30 days of testing. With optimal placement of existing machines, 46% were projected to receive results and 44% to initiate ART within 30 days, retaining three machines in current locations, moving eight to new facilities. Relocation based on the highest POC device functionality would be the best-performing heuristic decision (44% receiving results and 42% initiating ART withing 30 days); although, it still would not perform as well as the optimization-based approach. Optimal and ad hoc heuristic relocation of limited POC machines would increase timely result-return and ART initiation, without further, often costly, interventions. Location optimization can enhance decision-making regarding the placement of medical technologies for HIV care.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call