Abstract

Plasma surface modification is widely used to tailor the surface properties of polymeric materials. Most treatments are performed using low pressure plasma systems, but recently, atmospheric dielectric barrier discharges (DBDs) have appeared as interesting alternatives. Therefore, in this paper, an atmospheric He + CF4 DBD is used to increase the hydrophobicity of a polypropylene (PP) film. The surface characterization of the PP film is performed using contact angle measurements, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Results show that the hydrophobic properties of the polymer films are greatly enhanced after plasma treatment as evidenced by an increased contact angle. The incorporation of fluorine on the surface is significant (45 at%), demonstrating the ability of the used DBD set-up to generate fluorine-containing functional groups on the PP surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.