Abstract

Molybdenum disulfide (MoS2) has been extensively utilized as an electrocatalyst for the hydrogen evolution reaction (HER) with edges as the primary active catalytic sites. Previous work on edge-rich MoS2 nanoplatelet 3D porous films (3D-ER-MoS2) shows they are promising catalysts, yet have basal planes that are inactive. Here we demonstrate how hydrogen annealing and oxygen plasma etching of 3D-ER-MoS2 generates defects and increases active site density within the basal plane, leading to dramatic improvements in HER catalytic activity. We also explore the critical processing parameters for electrocatalytic enhancement. Significantly enriched edge density was revealed for both routes. O2 plasma treatment was more effective in increasing the number of edges by creating micro-cracks and local surface damage on the basal planes as well as structuring saw-toothed edges; H2 etching mainly introduced irregular shaped basal surface nanopores and strips. By controlling processing parameters, optimum surface area/active sites density enhancement can be achieved, together with the robust 3D porous architecture and superaerophobic surface. The defect-rich MoS2 catalysts exhibit excellent HER activity: 700 °C – H2 – MoS2 shows Tafel slope of 94 mV/dec and low onset overpotential of 193 mV; 15 min – O2 – MoS2 performs amongst the best with excellent exchange current density of 57 μA/cmgeo−2. Our defect engineered 3D-ER MoS2 exhibits jgeo (η = 0.5 mV) of 6-fold and 38-fold compared to monolayer MoS2 subject to similar process, for O2 plasma and H2 etching approaches respectively. Our study demonstrates an effective way to realize high performance Pt-free electrocatalysts for hydrogen generation by dual enhancement via edge enrichment and basal surface activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.