Abstract

The National Aeronautics and Space Administration’s Mars Science Laboratory terrestrial rover, Curiosity, has recently completed its first Martian year (687 Earth days) during which it has provided a wealth of information and insight into the red planet’s atmosphere and geology. The success of this mission was made possible in part by the reliable electrical power provided by its onboard thermoelectric power source—the multi-mission radioisotope thermoelectric generator (MMRTG). In an effort to increase the output power and efficiency of these generators, a newly designed enhanced MMRTG (eMMRTG) that will utilize the more efficient skutterudite-based thermoelectric materials has been conceptualized and modeled, and is now being developed. A discussion of the motivations, modeling results and key design factors are presented and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call