Abstract

It is shown that in the near-surface region of the solar cells (SCs) the concentration of nickel atoms is higher than in the bulk by 2–3 orders of magnitude, therefore, the gettering rate in the near-surface region is higher. Optimal modes of gettering by nickel clusters (i.e., nickel diffusion – Т = 800–850 °С, additional thermal annealing – Т = 750–800 °С) and the structure of a silicon SC were experimentally determined, which makes it possible to increase the efficiency of silicon SCs by 25–30% relative to the control. The physical mechanisms of the influence of the processes of diffusion of impurity nickel atoms and additional thermal annealing on the state of nickel atoms in the near-surface region and the SCs base and, accordingly, on the parameters of the SC are revealed. Physical models of the structure of a cluster of nickel atoms in silicon and the process of fast diffusing impurities gettering by clusters of nickel atoms are created. The binding energy of fast dissusing impurities atoms with a nickel cluster is estimated to be ~ 1.39 eV. The calculation shows that doping with nickel can increase the lifetime of minority charge carriers by 2–4 times, and the collection coefficient by 1.4–2 times. The experiment showed an increase in the minority charge carriers lifetime up to 2 times and an increase in efficiency by 25–30%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call