Abstract
To meet the demand for more powerful high-performance shared-memory servers, multiprocessor systems must incorporate efficient and scalable cache coherence protocols, such as those based on directory caches. However, the limited directory cache size of the increasingly larger systems may cause frequent evictions of directory entries and, consequently, invalidations of cached blocks, which severely degrades system performance. A significant percentage of the referred memory blocks are only accessed by one processor (even in parallel applications) and, therefore, do not require coherence maintenance. Taking advantage of techniques that dynamically identify those private blocks, we propose to deactivate the coherence protocol for them and to treat them as uniprocessor systems do. The protocol deactivation allows directory caches to omit the tracking of an appreciable quantity of blocks, which reduces their load and increases their effective size. Since the operating system collaborates on the detection of private blocks, our proposal only requires minor modifications. Simulation results show that, thanks to our proposal, directory caches can avoid the tracking of about 57% of the accessed blocks and their capacity can be better exploited. This contributes either to shorten the runtime of parallel applications by 15% while keeping directory cache size or to maintain system performance while using directory caches 8 times smaller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.