Abstract

BackgroundLignocellulosic biomass is seen as an abundant renewable source of liquid fuels and chemicals that are currently derived from petroleum. When lignocellulosic biomass is used for ethanol production, the resulting liquid residue (stillage) contains large amounts of organic material that could be further transformed into recoverable bioproducts, thus enhancing the economics of the biorefinery.ResultsHere we test the hypothesis that a bacterial community could transform the organics in stillage into valuable bioproducts. We demonstrate the ability of this microbiome to convert stillage organics into medium-chain fatty acids (MCFAs), identify the predominant community members, and perform a technoeconomic analysis of recovering MCFAs as co-products of ethanol production. Steady-state operation of a stillage-fed bioreactor showed that 18% of the organic matter in stillage was converted to MCFAs. Xylose and complex carbohydrates were the primary substrates transformed. During the MCFA production period, the five major genera represented more than 95% of the community, including Lactobacillus, Roseburia, Atopobium, Olsenella, and Pseudoramibacter. To assess the potential benefits of producing MCFAs from stillage, we modeled the economics of ethanol and MCFA co-production, at MCFA productivities observed during reactor operation.ConclusionsThe analysis predicts that production of MCFAs, ethanol, and electricity could reduce the minimum ethanol selling price from $2.15 to $1.76 gal−1 ($2.68 gal−1 gasoline equivalents) when compared to a lignocellulosic biorefinery that produces only ethanol and electricity.

Highlights

  • Lignocellulosic biomass is seen as an abundant renewable source of liquid fuels and chemicals that are currently derived from petroleum

  • We investigated the valorization of switchgrass-derived stillage to medium-chain fatty acids (MCFAs)

  • Two batches of stillage (Table 1) were produced from switchgrass hydrolysate fermented with S. cerevisiae Y128, a strain with improved utilization of xylose [20]

Read more

Summary

Introduction

Lignocellulosic biomass is seen as an abundant renewable source of liquid fuels and chemicals that are currently derived from petroleum. When lignocellulosic biomass is used for ethanol production, the resulting liquid residue (stillage) contains large amounts of organic material that could be further transformed into recoverable bioproducts, enhancing the economics of the biorefinery. The production of food, fuels, pharmaceuticals and many chemicals depends on microbial fermentations. When one considers the sum of microbial biomass, excreted metabolic end-products, and non-metabolized nutrients, there is considerable residual organic matter in the liquid residue (stillage) remaining after distillation. The Renewable Fuel Standards (RFS), created by the Energy Policy Act of 2005 and expanded by the Energy Independence and Security Act of 2007, set production goals for many renewable energy sources, including lignocellulosic-derived ethanol [3, 4]. The high costs of obtaining biomass and producing enzymes to hydrolyze biomass are cited as barriers to achieving an acceptable level of profitability for lignocellulosic biorefineries [2]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.