Abstract
Prompt gamma activation analysis (PGAA) is especially sensitive for elements with high neutron-capture cross sections, like boron, which can be detected down to a level of ng/g. However, if it is a major component, the high count rate from its signal will distort the spectra, making the evaluation difficult. A lead attenuator was introduced in front of the HPGe-detector to reduce low-energy gamma radiation and specifically the boron gamma rays reaching the detector, whose thickness was found to be optimal at 10 mm. Detection efficiencies with and without the lead attenuator were compared, and it was shown that the dynamic range of the PGAA technique was significantly increased. The method was verified with the analyses of stoichiometric compounds: TiB2, NiB, PVC, Alborex, and Alborite.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.