Abstract
Alkaline electrolyte flow through porous Zn anodes and Ni(OH)2 cathodes can overcome diffusion limits, reduce dendrite growth, and improve cycle life. Zinc deposition morphology improves with low flow rates electrolyte in KOH/ZnO electrolytes at current densities near the diffusion-limit regime. Zinc dendrites present without flow are suppressed by micrometer-per-second flow at concentrations ranging from 0.2 to 0.6 M ZnO dissolved in 6 M and 10 M KOH solutions. Zn-Cu asymmetric cell tests reveal that flowing electrolyte increases the lifespan by more than 6 times in the diffusion-limit regime by suppressing gas evolution and dendrite formation. Ni-Zn cell tests show that a flow-assisted battery cycles 1500 times with over 95% Coulombic efficiency (CE) at 35 mA cm−2 current density and 7 mAh/cm2 charge capacity, increasing the battery lifespan by 17 times compared with a stagnant Ni-Zn cell. Flow-through electrolyte also stabilizes the Zn electrode in the over-limiting regime, achieving approximately 4 times increased lifespan and 297 cycles with over 90% CE at 52 mA cm−2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.