Abstract

Reactions involving tert-alcohols and their esters are generally not catalyzed by lipases. Candida rugosa lipase is one of the few lipases which shows at least limited catalytic activity towards tert-alcohols and their esters. Using transesterification of tributyrin with tertiary butyl and amyl alcohols as a model reaction, it is shown that precipitation of lipase by a tertiary alcohol in the presence of a buffer with optimum concentration enhances the catalytic activity 7 fold as compared to rates obtained with lyophilized powders. Optimization of the ratio of triglyceride to tert-alcohols and medium engineering gave an initial rate which was 41 times higher than that obtained with lyophilized powders. Hence, use of a simple enzyme formulation, coupled with optimization of reaction conditions led to Candida rugosa lipase becoming a useful catalyst for catalyzing transesterification involving tertiary alcohols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.