Abstract
The combined effect of alloying and biaxial strain on atomic structure, as well as electronic and optical properties of FeS2 was first examined by the first-principles calculation. By allaying with Zn, our results show that the band gap of Fe1−xZnxS2 alloy increases firstly and then decreases with increasing Zn concentration, the maximum enlargement of band gap is ∼0.1eV. The left shift of the absorption threshold enhances the overall optical absorptivity. By imposing biaxial strain on the Zn-doped FeS2, the band gap decreases under compressive strain, but increases from 0.95eV to 1.14eV under 5% tensile strain. More specially, strain widens the band gap of Zn-doped FeS2 by ∼0.19eV, and the overall optical absorptivity is further enhanced by the combination of strain and Zn-doping. With the increase of the band gap by ∼0.29eV and the high optical absorptivity, FeS2 is a more promising material for photovoltaic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.