Abstract

As stimulus size increases, the direction of high-contrast moving stimuli becomes increasingly difficult to perceive. This counterintuitive effect, termed spatial suppression, is believed to reflect antagonistic center-surround interactions--mechanisms that play key roles in tasks requiring sensitivity to relative motion. It is unknown, however, whether second-order motion also exhibits spatial suppression. To test this hypothesis, we measured direction discrimination thresholds for first- and second-order stimuli of varying sizes. The results revealed increasing thresholds with increasing size for first-order stimuli but demonstrated no spatial suppression of second-order motion. This selective impairment of first-order motion predicts increasing predominance of second-order cues as stimulus size increases. We confirmed this prediction by utilizing compound stimuli that contain first- and second-order information moving in opposite directions. Specifically, we found that for large stimuli, motion perception becomes increasingly determined by the direction of second-order cues. Overall, our findings show a lack of spatial suppression for second-order stimuli, suggesting that the second-order system may have distinct functional roles, roles that do not require high sensitivity to relative motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.