Abstract

This paper is concerned with the inverse scattering problem of determining the unknown coefficients for a nonlinear two-dimensional Schrödinger equation. We establish for the first time the increasing stability of the inverse scattering problem from the multi-frequency far-field pattern for nonlinear equations. To achieve this goal, we prove the existence of a holomorphic region and an upper bound for the solution with respect to the complex wavenumber, which also leads to the well-posedness of the direct scattering problem. The stability estimate consists of the Lipschitz type data discrepancy and the high frequency tail of the unknown coefficients, where the latter decreases as the upper bound of the frequency increases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.