Abstract

Abstract The presence of water molecules around both adhesive materials and surface results in the hydration barriers that weaken adhesion. In nature, mussels attach to various types of surfaces by using 3,4-dihydroxyphenylalanine (DOPA) containing mussel foot proteins. DOPA shows wet adhesive properties before and after contribution in the hydrogel formation. Here, the wet adhesive properties of DOPA modified four armed poly(ethylene glycol) polymer (PEG-(DOPA)4) and its hydrogels induced by (IO4)- or (Cr2O7)2- ions are compared by using electron paramagnetic resonance (EPR) spectroscopy in terms of their surface coverages. In water, spin labeled hydrophobic polystyrene (SL-PS) and hydrophilic silica (SL-SiO2) nanoparticles are prepared, and the percentages of their covered surface values are obtained. Without applying force, the adhesion to SL-PS increases in the order of PEG-(DOPA)4

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call