Abstract

Objective. To increase the impedance signal amplitude produced during neural activity using a novel approach of implementing a parallel resistor inductor capacitor (RLC) circuit across the current source used in electrical impedance tomography (EIT) of peripheral nerve. Approach. The frequency response of the impedance signal was characterized in the range 4–18 kHz, then a frequency range with significant capacitive charge transfer was selected for experiment with the RLC circuit. Design of the RLC circuit was aided by in vitro impedance measurements on nerve and nerve cuff in the range 5 Hz to 50 kHz. Main results. The frequency response of the impedance signal across 4–18 kHz showed maximum amplitude at 6–8 kHz, and steady decline in amplitude between 8 and 18 kHz with −6 dB reduction at 14 kHz. The frequency range 17 ± 1 kHz was selected for the RLC experiment. The RLC experiment was performed on four subjects using an RLC circuit designed to produce a resonant frequency of 17 kHz with a bandwidth of 3.6 kHz, and containing a 22 mH inductive element and a 3.45 nF capacitive element with +0.8/− 3.45 nF manual tuning range. With the RLC circuit connected, relative increases in the impedance signal (±3σ noise) of 44% (±15%), 33% (±30%), 37% (±8.6%), and 16% (±19%) were produced. Significance. The increase in impedance signal amplitude at high frequencies, generated by the novel implementation of a parallel RLC circuit across the drive current, improves spatial resolution by increasing the number of parallel drive currents which can be implemented in a frequency division multiplexed (FDM) EIT system, and aids the long term goal of a real-time FDM EIT system by reducing the need for ensemble averaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.