Abstract

The object of research is the process of measuring the strength of the electrostatic field for a low dynamic range (from 0 to 1 kV/m). This study is aimed at increasing the sensitivity of the sensor of the electrostatic field mill (EF) by determining its optimal geometric configuration, which will reduce the error of measuring the electrostatic field strength. To establish the actual value of the induced current, a computer model was built and simulation modeling of the EF sensor was carried out. On the basis of the constructed computer model, studies of the EF sensor were carried out to determine the numerical value of the induced current. As a result, it was established that the occurrence of edge effects leads to the appearance of methodological error, which occurs due to the fact that the average induced current is smaller compared to the calculated value. As a result of computer modeling of the EF sensor to determine the value of the optimal number of sectors, it was established that for the proposed design of the EF sensor, the optimal number of sectors is six. It was established that the optimal value of the distance between the sensitive plates and the shielded rotor should be in the range of 2.5–3 mm to ensure the maximum sensitivity of the EF sensor and its safe use. The determined optimal parameters of the EF geometric configuration will allow to form the necessary requirements for the construction of improved electrostatic field strength meters in a low dynamic range (from 0 to 1 kV/m). A promising direction of application of such devices in production will be the development of an additional system for monitoring the strength of the electrostatic field, which will allow to prevent the occurrence of a dangerous situation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call