Abstract

Three consecutive dry winters (2015-2017) in southwestern South Africa (SSA) resulted in the Cape Town "Day Zero" drought in early 2018. The contribution of anthropogenic global warming to this prolonged rainfall deficit has previously been evaluated through observations and climate models. However, model adequacy and insufficient horizontal resolution make it difficult to precisely quantify the changing likelihood of extreme droughts, given the small regional scale. Here, we use a high-resolution large ensemble to estimate the contribution of anthropogenic climate change to the probability of occurrence of multiyear SSA rainfall deficits in past and future decades. We find that anthropogenic climate change increased the likelihood of the 2015-2017 rainfall deficit by a factor of five to six. The probability of such an event will increase from 0.7 to 25% by the year 2100 under an intermediate-emission scenario (Shared Socioeconomic Pathway 2-4.5 [SSP2-4.5]) and to 80% under a high-emission scenario (SSP5-8.5). These results highlight the strong sensitivity of the drought risk in SSA to future anthropogenic emissions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.