Abstract

We extend the celebrated Rothschild and Stiglitz (1970) definition of Mean-Preserving Spreads to a dynamic framework. We adapt the original integral conditions to transition probability densities, and give sufficient conditions for their satisfaction. We then focus on a class of nonlinear scalar diffusion processes, the super-diffusive ballistic process, and prove that it satisfies the integral conditions. We further prove that this class is unique among Brownian bridges. This class of processes can be generated by a random superposition of linear Markov processes with constant drifts. This exceptionally simple representation enables us to systematically revisit, by means of the properties of dynamic mean-preserving spreads, workhorse economic models originally based on White Gaussian Noise. A selection of four examples is presented and explicitly solved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.