Abstract

A major limitation of gene expression biomarker studies is that they are not reproducible as they simply do not generalize to larger, real-world, heterogeneous populations. Frequentist multi-cohort gene expression meta-analysis has been frequently used as a solution to this problem to identify biomarkers that are truly differentially expressed. However, the frequentist meta-analysis framework has its limitations-it needs at least 4-5 datasets with hundreds of samples, is prone to confounding from outliers and relies on multiple-hypothesis corrected p-values. To address these shortcomings, we have created a Bayesian meta-analysis framework for the analysis of gene expression data. Using real-world data from three different diseases, we show that the Bayesian method is more robust to outliers, creates more informative estimates of between-study heterogeneity, reduces the number of false positive and false negative biomarkers and selects more generalizable biomarkers with less data. We have compared the Bayesian framework to a previously published frequentist framework and have developed a publicly available R package for use.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.