Abstract

Rice flour (RF) has become a promising food material. In the present study, RF with higher protein content was prepared using a granular starch hydrolyzing enzyme (GSHE). Particle size, morphology, crystallinity, and molecular structures of RF and rice starch (RS) were characterized to establish a hydrolytic mechanism; thermal, pasting, and rheological properties were determined to evaluate processability using differential scanning calorimetry (DSC), rapid viscosity analysis (RVA), and rheometer, respectively. The GSHE treatment resulted in pinholes, pits, and surface erosion through sequential hydrolysis of crystalline and amorphous areas on the starch granule surface. The amylose content decreased with hydrolysis time, while the very short chains (DP < 6) increased rapidly at 3 h but decreased slightly later. After hydrolysis for 24 h, the protein content in RF increased from 8.52% to 13.17%. However, the processability of RF was properly maintained. Specifically, the data from DSC showed that the conclusion temperature and endothermic enthalpy of RS barely changed. The result of rapid RVA and rheological measurement indicated that RF paste viscosity and viscoelastic properties dropped rapidly after 1 h hydrolysis and thereafter recovered slightly. This study provided a new RF raw material useful for improving and developing RF-based foods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call