Abstract

High protein (HP) diet could serve as a good strategy against obesity, provoking the changes in energy metabolic pathways. However, those modifications differ during a dietary adaptation. To better understand the mechanisms involved in effect of high protein diet (HP) on limiting adiposity in rats we studied in parallel the gene expression of enzymes involved in protein and energy metabolism and the profiles of nutrients oxidation. Eighty male Wistar rats were fed a normal protein diet (NP, 14% of protein) for one week, then either maintained on NP diet or assigned to a HP diet (50% of protein) for 1, 3, 6 and 14 days. mRNA levels of genes involved in carbohydrate and lipid metabolism were measured in liver, adipose tissues, kidney and muscles by real time PCR. Energy expenditure (EE) and substrate oxidation were measured by indirect calorimetry. Liver glycogen and plasma glucose and hormones were assayed. In liver, HP feeding 1) decreased mRNA encoding glycolysis enzymes (GK, L-PK) and lipogenesis enzymes(ACC, FAS), 2) increased mRNA encoding gluconeogenesis enzymes (PEPCK), 3) first lowered, then restored mRNA encoding glycogen synthesis enzyme (GS), 4) did not change mRNA encoding β-oxidation enzymes (CPT1, ACOX1, βHAD). Few changes were seen in other organs. In parallel, indirect calorimetry confirmed that following HP feeding, glucose oxidation was reduced and fat oxidation was stable, except during the 1st day of adaptation where lipid oxidation was increased. Finally, this study showed that plasma insulin was lowered and hepatic glucose uptake was decreased. Taken together, these results demonstrate that following HP feeding, CHO utilization was increased above the increase in carbohydrate intake while lipogenesis was decreased thus giving a potential explanation for the fat lowering effect of HP diets.

Highlights

  • Body nutrient homoeostasis is under the control of hormonal and metabolic adaptations and involve changes in the expression of genes sensitive to dietary and nutritional conditions (Waterlow, 1981 FAO)

  • We studied the expression of the main genes involved in the regulation of the energetic pathways in several organs involved in the transfer of amino acid substrates to energy metabolism, along with the changes of pancreatic hormones and hepatic glucose uptake

  • The present study brings new evidence that when the protein content of the diet is increased at the expense of carbohydrate a cascade of metabolic adaptations is brought into play to face both the increase in dietary amino acid fluxes and the concomitant reduction in glucose availability

Read more

Summary

Introduction

Body nutrient homoeostasis is under the control of hormonal and metabolic adaptations and involve changes in the expression of genes sensitive to dietary and nutritional conditions (Waterlow, 1981 FAO). High protein diets promote weight loss, sparing lean body mass [1,2,3,4] and reduce the risk for cardiovascular disease in healthy and obese women [5,6] These effects are generally attributed to the high satiating power of proteins [1,7], and to specific adaptations of the metabolic pathways involved in protein and energy metabolism. It is established that amino acids can fuel gluconeogenesis when delivered in abundance even in the fed state [27] For these reasons, high protein diets have been reported to have positive effects on glucose homoeostasis in rats [24,25] and humans [28]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call