Abstract

BackgroundMolecular surveillance of newly diagnosed HIV-infections is important for tracking trends in circulating HIV-variants, including those with transmitted drug resistances (TDR) to sustain ART efficacy.MethodsDried serum spots (DSS) are received together with the statutory notification of a new diagnosis. 'Recent infections' (<155 days) classified by a 'recent infection test algorithm' (BED-CEIA and clinical data) are genotyped in HIV-protease (PR), reverse transcriptase (RT) and integrase (INT) to determine the HIV-1 subtype, to calculate prevalence and trends of TDR, to predict baseline susceptibility and to identify potential transmission clusters for resistant variants.ResultsBetween January 2013 and December 2016, 1,885 recent infections were analysed regarding the PR/RT genomic region, with 43.5% of these also being subjected to the analysis of INT. The proportion of HIV-1 non-B viruses (31.3%; 591/1,885) increased from 21.6% to 36.0%, particularly the subtypes A (5.0% to 8.3%) and C (3.2% to 7.7%; all ptrends < 0.01). The subtype A increment is mainly due to transmissions within men who have sex with men (MSM) while subtype C transmissions are associated with heterosexuals and people who inject drugs. The prevalence of TDR was stable at 11.0% (208/1,885) over the study period. Resistances to nucleotide RT inhibitors (NRTI) and PR inhibitors (PI) were 4.5% and 3.2%, respectively, without identifiable trends. In contrast, resistances to non-NRTIs (NNRTI, 4.7%) doubled between 2014 and 2016 from 3.2% to 6.4% (ptrend = 0.02) mainly due to the K103N mutation (from 1.7% to 4.1%; ptrend = 0.03) predominantly detected in recently infected German MSM not linked to transmission clusters. Transmitted INSTI mutations were present in only one case (T66I) and resistance to dolutegravir was not identified at all. Reduced susceptibility to recommended first-line therapies was low with 1.0% for PIs, 1.3% for NRTIs and 0.7% for INSTIs, but high for the NNRTIs efavirence (4.9%) and rilpivirine (6.0%) due to the K103N mutation and the polymorphic mutation E138A. These trends in therapy-naïve individuals impact current first-line regimens and require awareness and vigilant surveillance.

Highlights

  • HIV infection is still a major public health concern in EU/EEA countries with approximately 30,000 new cases reported each year [1]

  • The subtype A increment is mainly due to transmissions within men who have sex with men (MSM) while subtype C transmissions are associated with heterosexuals and people who inject drugs

  • Despite effective combination antiretroviral therapy (cART), transmitted drug resistances (TDR) is present at an overall stable proportion in Germany (11%)

Read more

Summary

Introduction

HIV infection is still a major public health concern in EU/EEA countries with approximately 30,000 new cases reported each year [1]. Prevention by pre-exposure prophylaxis (PrEP), frequent (self-) testing of persons at risk with rapid diagnostic assays and immediate initiation of highly effective combination antiretroviral therapy (cART) following a confirmed infection are among the most promising new measures introduced in recent years to curb the number of HIV-transmissions in this region of the world [2]. The prevalence of transmitted drug resistance (TDR) is primarily linked to the cART prescription pattern in a country, the proportion of individuals treated with cART, the extend of acquired drug resistance relaying on the common therapy adherence, resistance barriers of the administered antiretroviral regimes and the frequency of virus load monitoring. Molecular surveillance of newly diagnosed HIV-infections is important for tracking trends in circulating HIV-variants, including those with transmitted drug resistances (TDR) to sustain ART efficacy

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call