Abstract

The Internet of Production (IoP) describes a vision in which a broad range of different production data is available in real-time. Based on this data, for example, new control types can be implemented, which improve individual manufacturing processes directly at the machine. A possible application scenario is a tool deflection compensation. Although the problem of tool deflection is well known in the industrial field, a process-parallel compensation is not common in industrial applications. State-of-the-art solutions require time and cost consuming tests to determine necessary cutting parameters. An NC-integrated compensation that adapts the tool path in real-time will make these tests obsolete and furthermore enables higher chip removal rates. In this paper, a control-internal real-time compensation of tool deflection is described, which is based on a process-parallel measurement of process forces. The compensation software is designed as an extension to the NC kernel and thereby integrated into the position control loop of an in-series NC. The compensation movements are generated by manipulating the reference values of the feed axes. The approach is investigated by experiments with linear axis movements. During these tests, a significantly reduction of geometrical machining errors is possible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.